Characterization of trailing vortices generated by a Rushton turbine
نویسندگان
چکیده
منابع مشابه
Self-similarity of trailing vortices Self-similarity of trailing vortices
Trailing vortices have been repeatedly shown to exhibit a remarkably robust selfsimilarity independent of the Reynolds number and upstream boundary conditions. The collapse of the inner-scaled circulation profiles of a trailing vortex has even been previously demonstrated for the cases of highly unsteady and turbulent vortex systems, as well as for vortices which were incompletely developed. A ...
متن کاملCfd Study of Mixing Process in Rushton Turbine
This paper reports on the CFD study of macro-mixing process of Rushton turbine in stirred tank. The code for mixing calculation is developed in the commercial CFD code CFX4.3. Mixing process simulation on different calculation method, different turbulent model and different tracer adding and detecting position are calculated. The simulation is three-dimensional and the impeller region is explic...
متن کاملData on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank
The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior...
متن کاملA characterization of finitely generated multiplication modules
Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...
متن کاملGAS-LIQUID FLOW IN STIRRED REACTORS: Trailing Vortices and Gas Accumulation behind Impeller Blades
In a gas-liquid stirred reactor, gas tends to accumulate in low-pressure regions behind the impeller blades. Such gas accumulation forming so-called gas cavities, significantly alters impeller performance characteristics. We have computationally investigated gas-liquid flow generated by a Rushton turbine. Rotating Rushton turbine generates trailing vortices behind the blades, which enhance the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIChE Journal
سال: 2004
ISSN: 0001-1541
DOI: 10.1002/aic.10007